

Opening Remarks

DOE SC Exascale Requirements Review Bethesda Hyatt, June 2015

Richard Gerber, Salman Habib, Rob Roser

Welcome

- A big thank you to each and every one of you for taking time out of your busy schedules to help with this effort
- Besides those in the audience, there are many not here that helped us assemble the "white papers" and case studies
- This is an important opportunity for HEP to express its desires and important to expand what is already a very strong HEP-ASCR Partnership

Why are we here?

- ASCR expects to have exascale machines on the floor in the early 2020's
- We (HEP) are being asked to to discuss with ASCR and ourselves what are our computational needs necessary to get to the best science over the next decade.
 - This includes computing, storage, HPC, HTC, and networking needs as well as how we expect our software stack to evolve
 - Interested in "all" requirements for computing, storage, etc. need to support HEP research goals (not just the peak requirements)
- We started to document our needs through a series of White Papers and Case Studies that were prepared specifically for this meeting by many of you

Some HEP Specific Questions

- What changes in HEP computing practices would enable us to make the best use of ASCR Resources?
- How should the ASCR and HEP computing/data systems coevolve in order to optimize our combined resources and talent
- How aggressive will HEP be in its use of GPU's and other coprocessors?
- What is the nature of the required software environment for each application (this will vary considerably)
- What are the steps HEP needs to take <u>now</u> to be ready for this exciting new landscape and how to we educate our workforce?

Desired Outcomes from ASCR Perspective

- Gather computing, storage, and HPC services required (at all scales) to support HEP research through 2020-2025
 - Important to discuss application readiness for many-core/GPU and also application portability
 - Workflows
 - Compute and Storage
- Mission Needs and Science Drivers
 - Collect a set of white papers (bolstered with case studies) with scientific goals and how HPC requirements support achieving those goals
- What scientists want to do with computers/storage in future and what do we need to acquire to enable that
 - As many specifics of architecture required as possible: memory, network, disk, NVRAM, single-core performance, etc.

Logistics

Day 1

- The goal of this day is to educate each other on where we are so to that we get the best use out of Day 2's discussion
- Main Topics
 - Science Drivers and Facility Plans
 - Computing Challenges
 - Traditional HPC uses
 - Non-Traditional HPC and other opportunities
 - Q&A with the AD's
- Goal for the day are high level findings

Logistics

Day 2

- Summary of Day 1 Discussions
- Breakouts (2)
 - Traditional HPC
 - "Non-Traditional" use cases
- Working Group lunch to assemble quick breakout summaries (main themes, opportunities, challenges etc)
- Full group discussion of breakout summaries
- Breakouts craft high level findings

Day 3

- Subgroup work on report preparation
- End result will be a written report to DOE that will help both ASCR and HEP define their computing plans going forward

Thanks to the entire committee

- Salman Habib, ANL
- Robert M Roser, FNAL
- Lali Chatterjee, DOE HEP
- Barbara Helland, DOE ASCR
- Dave Goodwin, DOE ASCR
- Carolyn Lauzon, DOE ASCR
- Sudip Dosanjh, NERSC
- Katie Antypas, NERSC
- Richard Gerber, NERSC
- Paul Messina, ALCF
- Katherine Riley, ALCF
- Tim Williams, ALCF
- James J. Hack, OLCF
- Jack Wells, OLCF
- Tjerk Straatsma, OLCF
- Julia White, OLCF

